

Support of Fuels/Reformer R&D with Computational Fluid Dynamics (CFD) Modeling

Steven Lottes
And
Michael Petrick

Overall Objective of Reformer Modeling Program

Develop/validate a CFD model of a reformer that can be used to evaluate the interaction between and the impact of fuels (composition) and design/operating parameters on reformer performance.

What does a Computational Fluid Dynamics (CFD) Model Do?

- Solves the laws of conservation of mass, momentum, energy, and atomic species within a flow domain
- Couples the conservation laws with other physical & chemical processes (reaction, vaporization, turbulence, etc.) to provide a characterization of major processes within the flow domain
- Computes primary variables throughout the domain: T,P,**U**, ρ , h, k, ϵ , Y_i

Technical Approach

- Develop a reformer model utilizing ANL's multiphase reacting flow CFD codes
 - Incorporate kinetic models for POX, shift, and PROX reactions
- Model selected micro reactors and prototype reformers
 - Use CFD models to extract local kinetic rate constants for postulated reduced reaction models
- Validate reformer model
 - With available data over wide parameter space
- Use validated model to conduct parametric, sensitivity, optimization and scale up studies
 - Identify most promising fuel composition and associated optimal operating and design parameters
 - Quantify impact of key operating and design parameters on reformer performance
 - Explore design options to maximize performance

A CFD Model is an Invaluable Tool to Study Fuel/Reformer Interactions

Fuel constituent reaction rates are characterized by the Arrhenius equation: $\frac{\partial C}{\partial x} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)$

 $\frac{\partial C_i}{\partial t} = -K_i \left(\prod_r C_r^{n_r} \right) \exp \left(\frac{-E_i}{RT} \right)$

Where C_r = concentration of reactants, T = temperature, K_i = preexponential constant, n_r = order of reaction for species r, E_i = activation energy for reaction i

Reaction rates are very sensitive to temperature

A CFD Model computes the local and exit values of the flow parameters & reaction rates and thus the overall reformer performance

Fuels Composition and Reformer Design <u>Together</u> Determine Overall Reformer Performance

- Critical issues/parameters impacting reformer performance
 - Operating windows exist with respect to coking limits & catalyst heat tolerance determined by fuel composition, Air/Fuel ratio & Steam/Carbon ratio
 - Reforming reaction rates of individual fuel constituents
 - Controlling reforming reactions
 - Incomplete mixing of reactant streams at catalyst inlet (determined by entry region design)
 - Heat losses at component boundaries (creates T distribution that impacts reaction rates)
 - Reformer volume (size)/residence time
- CFD models can be used to help identify optimal fuels/blends and investigate the impact of such issues in a cost effective manner

Kinetic Model Development and Rate Constant Extraction with CFD

Reduced Isooctane Kinetics Model From Micro Reactor Experiments

- Reduced reaction set for C₈H₁₈ reforming
 - ◆ POX: $C_8H_{18} + 4 O_2 \rightarrow 8 CO + 9 H_2$
 - Oxidation: $C_8H_{18} + 25/2 O_2 \rightarrow 8 CO_2 + 9 H_2O$
 - Reforming: $C_8H_{18} + 16 H_2O \rightarrow 8 CO_2 + 25 H_2$
 - Reforming: $C_8H_{18} + 8 H_2O \rightarrow 8 CO + 17 H_2$
 - Shift: $CO + H_2O \rightarrow CO_2 + H_2$

Typical Predicted
Model Yield Trends in
Micro Reactor

Isooctane Reforming (1073 C) 0.35 0.30 0.25 - H2/He 0.20 CO/He 0.15 CO₂/He - H2O/He 0.10 0.05 0.00 0.02 0.01 0.03 0.04 0.05 X (m)

Approach Taken to Evaluate Impact of Reactant Maldistribution at Catalyst Bed Entry on Reformer Performance

- Defined/modeled four different reactant injection designs
 - Proprietary to industrial partner
 - ◆ Designated as Mixer A, B, C, D
- Coupled entrance models to specified autothermal reformer geometry
- Used isooctane reaction model
- Computed reformer H₂ yields
- Compared results with baseline having uniform reactant distribution at catalyst entry

Deviation From Uniform Equivalence Ratio Over Axial Cross Sections in Mixers up to Catalyst Bed Entry

Effect of Incomplete Mixing on Hydrogen Formation in an ATR Catalyst Bed (Based on Mixer D)

Distributions Traveling Through the Catalyst Bed for Mixer D

5/19/2002 12

Argonne National Laboratory
Transportation Technology R&D Center

Hydrogen Yield Ratios Compared to Ideal Mixing Case

Experimental Thermal Couple Well Temperatures Compared to Computed Trends

Program Schedule/Milestones

Major milestones:

Completed work:

- 1. Reduced reaction models for gasoline fuel developed
- 3. Component/reformer models validated
- 2. Overall reformer model completed
- 4. Transient reformer model completed

Planned Activities for Next Period

- Develop reduced reaction models for selected fuels
 - Focus on gasoline
 - Start from isooctane model reduced reaction set
 - Identify/use data available from labs and industry
- Finish monolith catalyst model
 - Add reaction to flow and heat transfer model
 - Fully couple to mixing zone computation
- Continue transient fast start heat up model development for ATR and water-gas-shift reactor
- Continue ongoing modeling support and CFD analysis activities consistent with guidance and available resources